设为首页 联系我们 加入收藏

当前位置: 网站首页 期刊分类目录 2021第3期 正文

非对称结构质子电解质微管中温燃料电池性能

作者:时间:2021-06-07点击数:

全文下载: 202103008.pdf


文章编号: 1672-6987202103-0045-09 DOI 10.16351/j.1672-6987.2021.03.008



陈长城1 Ben H RAINWATER2, 丁冬3, 白耀辉4, 张驰1(1.西安建筑科技大学 理学院,陕西 西安 710055 2.佐治亚理工学院 材料科学与工程学院,佐治亚州 亚特兰大 30332

3.爱达荷州国家实验室 能源与环境科学技术实验室,爱达荷州 爱达荷福尔斯 83415;4.华南理工大学 化学与化工学院,广东 广州 510641)


摘要: 采用相转化方法,以质子导体BaZr01Ce07Y01Yb01O3-δ(BZCYYb)材料为电解质,制备了阳极支撑微管中温固体氧化物燃料电池。电池结构为Ni-BZCYYb|BZCYYb|La075-Sr025-MnO3-δ-Sm02Ce08O2-δ,阳极、电解质和阴极的厚度分别为2001210 μm。获得了海绵状微孔电极|均匀多孔功能层不对称孔结构。以加湿氢气(3%(体积分数),H2O003 L·min-19999%)为燃料、空气为氧化剂进行电化学阻抗谱、电流-电压和功率密度测试,电池表现出优异的电化学性能,峰值功率密度在750700650600 ℃分别达到101089075058 W·cm-2Ni-BZCYYb阳极和LSM-SDC阴极的浓度极化电阻在750600 ℃仅为00140019 Ω·cm2。分别在0507 V恒定电压,600750 ℃进行了120 h长期稳定性试验,BZCYYb电解质具有良好的稳定性。电池截面微结构显示,BZCYYb电解质致密、无裂纹,电极具有非对称海绵状微孔,非常有利于形成三相界面,进而加速质子输运及反应。

关键词: 相转化; 燃料电池; 电解质; 浓度极化; 交流阻抗谱


中图分类号: TM 911.4文献标志码: A

引用格式: 陈长城, RAINWATER B H, 丁冬, 等. 非对称结构质子电解质微管中温燃料电池性能[J. 青岛科技大学学报(自然科学版), 2021, 42(3): 45-53.


CHEN Changcheng RAINWATER B H DING Dong et al. Research on the properties of asymmetric micro-tubular IT-SOFCs based on proton conducting electrolyteJ. Journal of Qingdao University of Science and TechnologyNatural Science Edition), 2021, 42(3): 45-53.


Properties of Asymmetric Micro-tubular IT-SOFCs

Based on Proton Conducting Electrolyte


CHEN Changcheng1 Ben H RAINWATER2 DING Dong3 BAI Yaohui4 ZHANG Chi1

(1.School of Science, Xi′an University of Architecture and Technology, Xi′an 710055, China;

2.School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;

3.Energy and Environmental Science and Technology, Idaho National Laboratory, Idaho Falls, ID 83415, USA;

4.School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China)


Abstract: In this work, proton conducting anode-supported micro-tubular SOFCs with BaZr01Ce07Y01Yb01O3-δ(BZCYYb) as the electrolyte have been fabricated via phase-inversion process. Typical micro-tubular cell is in the Ni-BZCYYb|BZCYYb|La075Sr025MnO3-δ-Sm02-Ce08O2-δ configuration consisting of anode, electrolyte and cathode with thickness of 200, 12 and 10 μm, respectively. The “sponge-like micro-pores electrode | homogeneous porous functional layer” asymmetric structure is obtained. Micro-tubular SOFCs show excellent electrochemical performance, the peak power densities are 101, 089, 075 and 058 W·cm-2 at 750, 700, 650 and 600 ℃, respectively, with humidified hydrogen (3%Volume fraction H2O, 003 L·min-1, 9999%) as fuel and ambient air as oxidant. The concentration polarization values of 0014—0019 Ω·cm2 are obtained at 750—600 ℃, characterized by AC impedance spectroscopy. Further, significant performance enhancement is observed during long-term stability test at 600 and 750 ℃ under constant voltage of 05 and 07 V over 120 h, respectively, which indicates excellent stability of BZCYYb under fuel cell operating condition. SEM exhibit dense, crack-free BZCYYb electrolyte film and with micro sponge-like pores electrodes, which is very beneficial to the formation of three-phase interface, thus accelerating the proton transport and reaction.

Key words: phase-inversion; fuel cell; electrolyte; concentration polarization; AC impedance spectroscop



收稿日期: 2020-06-04

基金项目: 西安市科技计划高校人才服务企业项目(2019217414GXRC010CG011-GXYD10.2);陕西省体育局体育科研课题常规项目(2019147);国家大学生创新创业训练计划项目(20190703055.

作者简介: 陈长城(1980—),,副教授.


Copyright © 2011-2017 青岛科技大学学报 (自然科学版)