设为首页 联系我们 加入收藏

当前位置: 网站首页 期刊分类目录 2025第5期 正文

耦合辨识(5): 部分耦合信息向量系统的递阶迭代参数辨识

作者:时间:2025-11-01点击数:



全文下载: 202505001.pdf


文章编号: 1672-6987(2025)05-0001-09 DOI: 10.16351/j.1672-6987.2025.05.001

丁锋1,2 栾小丽1 徐玲3 刘喜梅21.江南大学 物联网工程学院, 江苏 无锡 214122;2.青岛科技大学 自动化与电子工程学院, 山东 青岛 266061; 3.常州大学 微电子与控制工程学院,江苏 常州 213519)

摘要: 一个多变量系统经过参数化后,可以化为一个部分耦合信息向量辨识模型。本研究针对具有部分耦合信息向量的多变量系统,即具有部分信息向量耦合的多变量系统,基于其耦合辨识模型,研究相应的迭代参数辨识方法,包括递阶梯度迭代算法,递阶最小二乘迭代算法,递阶多新息梯度迭代算法,递阶多新息最小二乘迭代算法等。这些递阶迭代参数辨识方法可以推广到其他有色噪声干扰下的线性和非线性多变量随机系统中。


关键词: 参数估计; 迭代辨识; 多新息辨识; 递阶辨识; 耦合辨识; 最小二乘; 多变量系统


中图分类号: TP 273        文献标志码: A


引用格式: 丁锋, 栾小丽, 徐玲, . 耦合辨识(5): 部分耦合信息向量系统的递阶迭代参数辨识[J]. 青岛科技大学学报(自然科学版), 2025, 46(5): 1-9.


DING Feng, LUAN Xiaoli, XU Ling, et al. Coupling identification. Part E: Hierarchical iterative parameter identification for partially-coupled information vector systems[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2025, 46(5): 1-9.

Coupling Identification. Part E: Hierarchical Iterative Parameter Identification for Partially-Coupled Information Vector Systems

DING Feng1,2 LUAN Xiaoli1 XU Ling3 LIU Ximei21.School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;2.College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China;3.School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, China)

Abstract: After parameterization, a multivariable system can be transformed into a partially-coupled information vector identification model. This paper focuses on partial information vector coupling multivariable systems, referred to as partially-coupled information vector multivariable systems. Based on their coupled identification models, we propose their corresponding iterative parameter identification methods, including hierarchical gradient-based iterative algorithms, hierarchical least-squares-based iterative algorithms, hierarchical multi-innovation gradient-based iterative algorithms, and hierarchical multi-innovation least-squares-based iterative algorithms, etc. These iterative parameter identification methods can be extended to other linear and nonlinear multivariate stochastic systems with colored noise.


Key words: parameter estimation; iterative identification; multi-innovation identification; hierarchical identification; coupling identification; least squares; multivariable system

收日期: 2025-07-28

基金项目: 国家自然科学基金项目(62273167).

作者简介: 丁锋(1963—), 男, 博士, “泰山学者”特聘教授, 博士生导师.


Copyright © 2011-2017 青岛科技大学学报 (自然科学版)