设为首页 联系我们 加入收藏

当前位置: 网站首页 期刊分类目录 2025第3期 正文

环三磷腈改性壳聚糖阻燃剂的制备与表征及其 对 PLA 的阻燃

作者:时间:2025-07-04点击数:



全文下载: 8.pdf


文章编号:1672-6987(2025)03-0091-10;DOI:10. 16351/j. 1672-6987. 2025. 03. 013


刘鹏博,马小兵,崔宏丽,吴宁晶 (青岛科技大学 高分子科学与工程学院,山东 青岛 266042)


要:采用六氯环三磷腈(HCCP)对壳聚糖(CS)化学改性制备得到环三磷腈改性壳聚糖生物基阻燃剂(HCPCS),并将 HCPCS 阻燃剂与生物可降解塑料聚乳酸(PLA)通过熔融共混制备得到阻燃 PLA/HCPCS 复合材料,分析 PLA/HCPCS 复合材料的阻燃性和相关的阻燃机

理。采用傅里叶变换红外光谱(FT-IR)、X 射线衍射法(XRD)和 X 射线光电子能谱(XPS)等 测试方法对 HCPCS 阻燃剂的微结构进行表征,结果表明:HCPCS 被成功制备,HCPCS 中磷的 质 量 分 数 大 约 为 13. 18%;采 用 扫 描 电 子 显 微 镜(SEM)对 产 物 的 表 面 形 貌 进 行 表 征 ,HCPCS 的表面比 CS 更加粗糙,平均粒径减少。热失重法(TG)测试结果表明:在空气氛下,HCPCS 比 CS 的 成 碳 能 力 明 显 提 高 。 700 ℃ 时 ,HCPCS 的 残 炭 率 提 高 到 32. 2%。 PLA/HCPCS 复合材料的阻燃性能测试结果表明,添加 4%(质量分数)的 HCPCS 复合材料 LOI 达到 29. 0%,垂直燃烧达到 UL-94 V-0 级。TG-FTIR 及残炭红外测试结果表明,HCPCS 在热分解过程中释放出不可燃气体,如 NH3

CO2,并促进 PLA 阻燃复合材料形成炭层,抑制 PLA的进一步的燃烧分解,起到气相和固相协效阻燃作用。


关键词:壳聚糖;生物基阻燃剂;六氯环三磷腈;化学改性;阻燃机理


中图分类号:TB 332 文献标志码:A


引用格式:刘鹏博,马小兵,崔宏丽,等 . 环三磷腈改性壳聚糖阻燃剂的制备与表征及其对PLA 的阻燃[J]. 青岛科技大学学报(自然科学版),2025,46(3):91-100.


LIU Pengbo, MA Xiaobing, CUI Hongli, et al. Preparation and characterization of

cyclotriphosphonitrile-modified chitosan flame retardants and their flame retardant to PLA[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition),2025,46 (3):91-100.


Preparation and Characterization of Cyclotriphosphonitrile-Modified Chitosan Flame Retardants and Their Flame Retardant to PLA


LIU Pengbo,MA Xiaobing,CUI Hongli,WU Ningjing (College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China)

Abstract:Chitosan(CS) was chemically modified Cyclotriphosphoritrile (HCCP) to obtain cyclotriphosphitrile modified chitosan bio-based flame retardant (HCPCS), and the flame retar dant polylactic acid (PLA)/HCPCS composites were prepared by melt-blending of HCPCS flame retardant and biodegradable plastic PLA composites, and the flame retardancy and related flame retardant mechanism of PLA/HCPCS composites were analyzed. The microstructure of the HCPCS flame retardant was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the results

showed that HCPCS was successfully prepared, and the mass content of phosphorus in HCPCS was about 13. 18%; the surface morphology of the product was characterized by scanning elec tron microscopy (SEM), and the surface of HCPCS was rougher than CS, and the average par ticle size was reduced. The results of the thermogravimetric loss method (TG) show that under the air atmosphere, the char yield HCPCS is significantly improved compared with that of CS. At 700 ℃, the char yield of HCPCS increases to 32. 2%. The flame retardant performance test

results of PLA/HCPCS composite materials show that the LOI of PLA composites with 4% of HCPCS added reaches 29. 0%, and the vertical combustion reaches UL-94 V-0. The results of TG-FTIR test show that HCPCS released non-flammable gases such as NH3and CO2during thermal decomposition, which promoted the formation of char layer of PLA flame retardant com posites to inhibit the further combustion decomposition of PLA, and played important synergis tic flame retardant influence in gas phase and condensed phase.


Key words:chitosan; bio-based flame retardant; hexachlorocyclotriphosphoritrile; chemical modification; flame retardant mechanism


收稿日期:2024-06-05

基金项目:山东省自然科学基金项目(ZR2020MB072).

作者简介:刘鹏博(1994—),男,硕士研究生 . 通信联系人 .


Copyright © 2011-2017 青岛科技大学学报 (自然科学版)