全文下载:
1.pdf
文章编号: 1672-6987(2025)02-0001-12 DOI: 10.16351/j.1672-6987.2025.02.001
丁锋1,2, 栾小丽1, 徐玲3, 周怡红4, 刘喜梅2(1. 江南大学 物联网工程学院, 江苏 无锡, 214122; 2. 青岛科技大学 自动化与电子工程学院, 山东 青岛 266061;3. 常州大学 微电子与控制工程学院, 江苏 常州 213159; 4. 苏州科技大学 电子与信息工程学院, 江苏 苏州 215009)
摘要: 针对子系统间存在参数耦合的多变量系统,利用耦合辨识概念,研究和提出了部分耦合随机梯度辨识方法和部分耦合多新息随机梯度辨识方法,部分耦合递推梯度辨识方法和部分耦合多新息递推梯度辨识方法,部分耦合递推最小二乘辨识方法和部分耦合多新息递推最小二乘梯度辨识方法,以及部分耦合递阶最小二乘辨识方法和部分耦合多新息递阶最小二乘梯度辨识方法。这些部分耦合递推参数辨识方法可以推广到其他有色噪声干扰下的线性和非线性多变量随机系统中。
关键词: 参数估计; 递推辨识; 多新息辨识; 递阶辨识; 耦合辨识; 最小二乘; 多变量系统
中图分类号: TP 273 文献标志码: A
引用格式: 丁锋, 栾小丽, 徐玲, 等. 耦合辨识(2): 部分耦合参数向量系统的部分耦合递推参数辨识[J]. 青岛科技大学学报(自然科学版), 2025, 46(2): 1-12.
DING Feng, LUAN Xiaoli, XU Ling, et al. Coupling identification. Part B: Partially-coupled recursive parameter identification for partially-coupled parameter vector systems[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2025, 46(2): 1-12.
Coupling Identification. Part B: Partially-Coupled Recursive Parameter Identification for Partially-Coupled Parameter Vector Systems
DING Feng1,2, LUAN Xiaoli1, XU Ling3, ZHOU Yihong4, LIU Ximei2(1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China; 2. College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China;3. School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, China;4. School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China)
Abstract: For the multivariable systems that exist the parameter coupling between their subsystems, this paper investigates and proposes parameter identification methods for partially-coupled parameter vector systems based on the coupling identification concept,including partially-coupled stochastic gradient identification methods and partially-coupled multi-innovation stochastic gradient identification methods, partially-coupled recursive gradient identification methods and partially-coupled multi-innovation recursive gradient identification methods, and partially-coupled hierarchical least squares identification methods and partially-coupled hierarchical multi-innovation least squares identification methods as well. These partially-coupled recursive parameter identification methods can be extended to other linear and nonlinear multivariable stochastic systems under colored noise disturbances.
Key words: parameter estimation; recursive identification; multi-innovation identification; hierarchical identification; coupling identification; least squares; multivariable system
收稿日期: 2025-01-08
基金项目: 国家自然科学基金项目(62273167).
作者简介: 丁锋(1963—), 男, 博士, “泰山学者”特聘教授, 博士生导师.
.