设为首页 联系我们 加入收藏

当前位置: 网站首页 期刊分类目录 2017第5期 正文

滤波增益模糊自适应调节导航算法

作者:时间:2017-10-23点击数:

PDF全文下载:2017050101

曹梦龙, 李振

(青岛科技大学 自动化与电子工程学院,山东 青岛 266042)

摘要: 研究基于自主车的自主导航信息融合算法,针对量测噪声、建模误差等因素引起的滤波发散问题,提出一种实时、自适应滤波算法。通过监测新息向量均值与协方差变化,构建模糊规则推理机制,通过模糊推理,自适应调节滤波器滤波增益,实时改变量测信息估计并更新权重,抑制滤波发散,实现最优估计。搭建自主车仿真环境,采集跑车数据,验证结果表明:相比常规滤波,该算法提高滤波精度效果明显,较好解决了噪声及未建模部分所引起的滤波发散问题。

关键词: 自主车; 自主导航; 加权EKF; 新息; 模糊自适应调节; 滤波增益

中图分类号:  TP 273文献标志码: A

引用格式:曹梦龙, 李振. 滤波增益模糊自适应调节导航算法\[J\]. 青岛科技大学学报(自然科学版), 2017, 38(5): 101-106.

CAO Menglong, LI Zhen. Algorithm of navigation based on fuzzy adaptive control of filter gain\[J\]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2017, 38(5): 101-106.

Algorithm of Navigation Based on Fuzzy Adaptive Control of Filter Gain

CAO Menglong, LI Zhen

(College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266042, China) 

Abstract: This paper studies the autonomous navigation information fusion algorithm based on autonomous vehicle, and a real-time and adaptive filtering algorithm is put forward in order to cope with the divergence issues caused by elements such as measurement noise, modeling errors and other elements in the filter. The filtering gain of the adaptive filter is adjusted by the fuzzy control, and the estimating and updating weight of the measured information is changed in real time by monitoring the change of the mean and covariance of innovation, so that to achieve the purpose of restraining divergence and achieving optimal estimation. We set up the autonomous vehicle simulation environment, and collected sports car running data. It can be seen from the simulation results that the algorithm which is put forward can improve the accuracy of filtering and enhance the real-time performance significantly, and is a good solution to the problem of filtering divergence caused by the noise and the non-modeling part, compared with the conventional filtering.

Key words: autonomous vehicle; autonomous navigation; weighted EKF; innovation; fuzzy adaptive control; filter gain

收稿日期:    2016-07-22

基金项目: 国家高技术研究发展计划项目(2006AA122Z305).

作者简介: 曹梦龙(1971—),男,副教授.

文章编号: 1672-6987(2017)05-0101-06; DOI: 10.16351/j.1672-6987.2017.05.019

Copyright © 2011-2017 青岛科技大学学报 (自然科学版)