PDF全文下载:2017030001
丁锋1,2, 徐玲2, 刘喜梅1
(1.青岛科技大学 自动化与电子工程学院, 山东 青岛266042;2.江南大学 物联网工程学院, 江苏 无锡214122)
摘要:利用梯度搜索、牛顿搜索、多新息辨识理论,研究多频标准正弦信号的建模问题,提出了相应的最小均方参数辨识算法、随机梯度参数辨识算法、多新息随机梯度参数辨识算法、递推梯度参数辨识算法、牛顿递推参数辨识算法等,给出了几个典型辨识算法的计算步骤。文中的方法可以推广到其它多频信号模型的参数辨识。
关键词:信号建模; 参数估计; 梯度搜索; 牛顿搜索; 多新息辨识理论; 递推梯度; 正弦信号
中图分类号:TP 273文献标志码:A
引用格式:丁锋,徐玲,刘喜梅.信号建模(3):多频率信号模型的递推参数估计[J].青岛科技大学学报(自然科学版),2017,38(3):1-12.
DING Feng, XU Ling, LIU Ximei. Signal modeling. Part C: Recursive parameter estimation for multifrequency signal models[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2017, 38(3): 1-12.
Signal Modeling. Part C: Recursive Parameter Estimation for Multi-Frequency Signal Models
DING Feng1,2, XU Ling2, LIU Ximei1
(1.College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; 2.School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China)
Abstract: By using the gradient search, the Newton search, the multi-innovation identification theory, this paper studies multi-frequency standard sine signal modeling, and presents the corresponding least mean square parameter identification algorithm, stochastic gradient parameter identification algorithm, multi-innovation stochastic gradient parameter identification algorithm, Newton recursive parameter identification algorithm, etc. Finally, the computational steps of several typical identification algorithms are given. The methods in the paper can be extended to other multi-frequency signal modeling.
Key words: signal modeling; parameter estimation; gradient search; Newton search; multi-innovation identification theory; recursive gradient; sine signal
收稿日期:2017-05-02
基金项目:国家自然科学基金项目(61472195).
作者简介:丁锋(1963—),男,博士,“泰山学者”特聘教授,博士生导师.
文章编号:16726987(2017)03000112; DOI: 10.16351/j.1672-6987.2017.03.001