PDF全文下载:2016020214
汤旻安1a,2, 刘赞科1a, 郑悦1b
(1.兰州交通大学 a.自动化与电气工程学院;b.光电技术与智能控制教育部重点实验室,甘肃 兰州 730070;
2.兰州理工大学 机电工程学院,甘肃 兰州 730050)
摘要: 针对城市交叉口交通流分布的特点,提出了一种经遗传算法优化的模糊控制算法。该算法采用模糊逻辑控制和具有寻优能力的遗传算法,并结合马尔科夫链理论对交通流分布概率进行分析,通过遗传算法对模糊控制器隶属度函数进行优化调整。为检验方法的性能,以交叉口车辆平均延误作为性能指标,在相同交通条件下进行仿真实验。研究结果表明:相对于传统方法,本研究提出的方法能够有效减少交叉口车辆的平均延误,提高交叉口的通行能力。
关键词: 智能交通; 信号控制; 遗传算法; 模糊逻辑控制; 马尔科夫链
中图分类号: TP 18 文献标志码: A
Intersection Fuzzy Control Based on Markov Model
TANG Minan1a,2, LIU Zanke1a, ZHENG Yue1b
(1. a.School of Automation and Electrical Engineering; b.Key Laboratory of OptoTechnology and
Intelligent Control Ministry of Education,LanzhouJiaotongUniversity,Lanzhou 730070,China;
2. School of Mechanical and Electronic Engineering, Lanzhou University of Technology, Lanzhou 730050,China)
Abstract: Based on the characteristics of urban intersection traffic distribution, a kind of intersection fuzzy control algorithm was proposed by the gentetic algorithm to optimize. The algorithm is based on application of fuzzy logic control and genetic algorithm with optimization ability combined with the Markov chain theory to analyze traffic flow distribution probability. In this paper, genetic algorithms was used to optimize and adjust the membership function of fuzzy controller. To validate the performance of the control method, carried out simulation with vehicle average delay in the intersections being the performance index. The result shows that the proposed, comparing with traditional methods, could decreasing the vehicle average delay and increasing traffic capacity of the intersections.
Key words: intelligent transportation; signal control; genetic algorithm; fuzzy logic control; Markov chain
收稿日期: 20150307
基金项目: 国家自然科学基金项目(61263004);甘肃省科技支撑计划项目(090GKCA009,1304GKCA023);兰州市科技攻关计划项目(2013418).
作者简介: 汤旻安(1973—),男,副教授.
文章编号: 16726987(2016)02021406; DOI: 10.16351/j.16726987.2016.02.019