PDF全文下载:2015050564
曹梦龙1, 刘汉炜2, 李飞飞1
(1.青岛科技大学 自动化与电子工程学院,山东 青岛 266042;2.湖南大学 电气与信息工程学院,湖南 长沙 410082)
摘要: 研究了水下导航同时定位与环境地图构建(SLAM)技术,以水下机器人(AUV)为载体,研究了水下导航同时定位与环境地图相连(SLAM)技术,研究解决SLAM问题中的扩展卡尔曼滤波(EKF)算法存在的问题。针对在进行线性化的过程中产生模型误差和在状态转移阵及观测阵中出现未知模型误差的情形,提出基于虚拟噪声补偿技术的EKF算法,结合AUV系统模型搭建仿真平台,从滤波精度、收敛性及算法稳定性方面验证改进算法的效果。从仿真结果表明,相对于传统的EKF算法,改进后的EKF算法显著提高了非线性滤波的性能,解决了AUV应用SLAM技术精确性和鲁棒性的问题。
关键词: 自主水下机器人; AUV系统模型; SLAM算法; EKF; 虚拟噪声补偿技术
中图分类号: TP 24 文献标志码: A
Simultaneous Localization and Mapping Improved Algorithm of Underwater Navigation
CAO Menglong1, LIU Hanwei2, LI Feifei1
(1.College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
2.College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)
Abstract: The simultaneous localization and mapping improved algorithm of underwater navigation is based on underwater robot (AUV) as a carrier. This paper focuses on the extended kalman filter (EKF) algorithms, it can solve the problem of SLAM. But the EKF algorithm can generate the model errors in the process of linearization ,it also has the unknown model errors in the state transition matrix and observation matrix. For solving these problems, this paper presents the EKF algorithm based on virtual noise compensation technology. The simulation platform builting on the basis of AUV system models, can test the improved algorithm from filtering accuracy, convergence and stability. The simulation results show that, compared with the traditional EKF algorithm, the improved EKF algorithm significantly improves the performance of nonlinear filtering, it solves the accuracy and robustness issues of SLAM.
Key words: AUV; AUV system models; SLAM algorithm; EKF; virtual noise compensation technology
收稿日期: 20140603
作者简介: 曹梦龙(1971—),男,副教授.
文章编号: 16726987(2015)05056405; DOI: 10.16351/j.16726987.2015.05.018