PDF全文下载:2011030301
刘喜梅, 郭静
(青岛科技大学 自动化与电子工程学院,山东 青岛266042)
摘要: 为了解决量子遗传算法(QGA)中容易陷入局部极值问题,提出了一种新的改进量子遗传算法。利用小生境协同进化策略初始化量子种群,并采用动态的量子旋转角调整策略来加快收敛速度。利用Rosenbrock测试显示改进后的量子遗传算法性能要优于量子遗传算法和传统的遗传算法。
关键词: 量子遗传算法; 函数极值优化; 量子旋转角; 小生境协同进化
中图分类号: TP 301 文献标志码: A
Application of Modified Quantum Genetic Algorithm in Optimization of Extremal Function
LIU Xi-mei, GUO Jing
(College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266042,China)
Abstract: A novel improved quantum genetic algorithm is proposed to overcome the shortcoming of the quantum genetic algorithm(QGA),for example,local optimization. Evolutionary strategy with niche is used to initialize quanta swarm,and the dynamic quantum rotation corner adjustment method is adopted to speed up convergence rate. The test shows that the per-formance of the proposed algorithm is superior to the quantum genetic algorithm and traditional genetic algorithm.
Key words: quantum genetic algorithm; optimization of extremal function; quantum rotation corner; evolutionary strategy with niche
收稿日期: 2010-11-11
基金项目: 山东省自然科学基金项目(Y2008G14).
作者简介: 刘喜梅(1961—),女,教授.