全文下载:
202504016.pdf
文章编号: 1672-6987(2025)04-0110-11DOI: 10.16351/j.1672-6987.2025.04.016
刘琪1, 张典1*, 黄青山2, 田亮2, 常天奇1, 孙率2(1.青岛科技大学 自动化与电子工程学院, 山东 青岛 266061;2.中国科学院青岛生物能源与过程研究所, 山东 青岛 266101)
摘要: 正极材料烧结炉温度具有非线性、调节滞后性大的特点,经典PID控制精度低、系统波动大,而径向基神经网络具有解决非线性的优势,适于实时控制系统。但径向基网络的控制参数设置是否得当对其控制精度影响很大,而正极材料烧结炉的功率和散热等不同,人为很难设定好参数。为此,首先在径向基网络中引入一种变动量因子,用于增强网络的自适应性,然后提出一种改进灰狼算法用于径向基网络控制参数的确定。将改进灰狼算法应用于径向基网络PID温度控制,并与其他算法进行比较。仿真结果证明:改进灰狼算法的收敛速度和寻优能力要优于其他算法,用改进灰狼算法优化径向基网络PID温度控制,能够有效抑制系统超调量,提高系统控制精度和稳定性,对正极材料烧结炉温度控制具有较大的实用价值。
关键词: 正极材料烧结炉; 灰狼算法; 径向基神经网络; 温度控制
中图分类号: TP 183; TP 273 文献标志码: A
引用格式: 刘琪, 张典, 黄青山, 等. 基于改进灰狼算法的正极材料烧结炉温度控制[J]. 青岛科技大学学报(自然科学版), 2025, 46(4): 110-120.
LIU Qi, ZHANG Dian, HUANG Qingshan, et al. Temperature control of cathode material sintering furnace based on enhanced grey wolf optimization algorithm[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2025, 46(4): -.
Temperature Control of Cathode Material Sintering Furnace Based on Enhanced Grey Wolf Optimization Algorithm
LIU Qi1, ZHANG Dian1, HUANG Qingshan2, TIAN Liang2, CHANG Tianqi1, SUN Shuai2
(1.College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China;2.Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China)
Abstract: The temperature control in the cathode material sintering furnace is characterized by non-linearity and large hysteresis in temperature regulation. The traditional PID method for temperature control has the shortcomings of low control accuracy and high system fluctuation, while the radial-based neural network has the advantage of nonlinear control and is suitable for real-time control systems. However, the proper setting of control parameters based on the radial network significantly influences the control accuracy, and the power and heat dissipation of the cathode material sintering furnace are problem-dependent, leading to the parameter setting being very difficult. In this work, a variability factor was introduced in the radial basis network to enhance the adaptivity of the network, and an enhanced grey wolf optimization algorithm was developed to determine the control parameters of the radial basis network. The enhanced grey wolf optimization algorithm was applied to radial basis network PID temperature control and compared with other optimization algorithms. The simulation results showed that the convergence speed and optimization ability of the enhanced grey wolf optimization algorithm are superior to the other algorithms, and the enhanced grey wolf optimization algorithm for optimizing the radial basis network PID control could effectively suppress system overshoot, improving control accuracy and stability of the system. The control methods developed here have some critical practical values for temperature control of the cathode material sintering furnaces.
Key words: cathode material sintering furnace; grey wolf optimization algorithm; radial basis function neural network; temperature control
收稿日期: 2024-08-26
基金项目: 山东省自然科学基金项目(ZR2021MF023).
作者简介: 刘琪(1997—), 男, 硕士研究生. * 通信联系人.