全文下载:
202504018 .pdf
文章编号: 1672-6987(2025)04-0129-07DOI: 10.16351/j.1672-6987.2025.04.018
刘毅1, 王亚林2, 孙玉洁1, 王晓伟3, 姚文龙1*(1.青岛科技大学 自动化与电子工程学院, 山东 青岛 266061; 2.济宁港航龙拱港有限公司, 山东 济宁 272000;3.青岛智腾微电子有限公司, 山东 青岛 266109)
摘要: 针对具有不确定性动态及外部未知负载扰动的船舶舵机系统,提出了一种紧格式动态线性化的智能自学习PID控制方法,该控制方法不依赖于系统精确数学模型,是一种数据驱动控制方法。首先,建立液压舵机系统动力学模型;其次,运用改进的动态线性化方法给出舵机系统数据模型,引入时间差分估计算法与梯度估计算法对数据模型中的非线性不确定项与时变参数项进行参数估计;然后,设计基于最优性能指标的舵角跟踪智能自学习PID控制方法,利用系统误差信息,通过引入附加误差来对线性化过程中遗失的信息进行补偿;最后,设计具有抗未知扰动的液压舵机系统学习控制律与参数更新律,并进行仿真验证。研究结果表明:在考虑未知扰动影响的船舶液压舵机系统中,采用智能自学习PID算法的控制效果最为理想,在36.45 s能够实现舵角和水动力距方向的变化,舵角跟踪误差精度在0.05o以内。同时通过理论分析与仿真实验验证了所提控制方法的收敛性,仿真结果表明该控制方法应用于液压舵机系统的有效性和优越性,提高了恶劣海航下船舶舵机系统舵角跟随精度与动态响应速度,能够实现期望舵角轨迹的精准跟踪。
关键词: 船舶液压舵机系统; 未知扰动系统; 智能自学习PID控制; 动态线性化; 时间差分估计算法; 梯度估计算法; 无模型自适应控制。
中图分类号: TM 914 文献标志码: A
引用格式: 刘毅, 王亚林, 孙玉洁, 等. 具有未知扰动的船舶液压舵机智能自学习PID控制[J]. 青岛科技大学学报(自然科学版), 2025, 46(4): 129-135.
LIU Yi, WANG Yalin, SUN Yujie, et al. Intelligent self-learning PID control of hydraulic steering gear for ships with unknown disturbances[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2025, 46(4): -.
Intelligent Self-Learning PID Control of Hydraulic Steering Gear for Ships with Unknown Disturbances
LIU Yi1, WANG Yalin2, SUN Yujie1, WANG Xiaowei3, YAO Wenlong1(1.College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; 2.Jining Port and Shipping Development Group Longgong Port Co., Ltd., Jining 272000, China; 3.Qingdao ZITN Micro-Electronics Co, Ltd., Qingdao 266019, China)
Abstract: Aiming at the ship steering gear system with uncertain dynamics and unknown external load disturbance, an intelligent self-learning PID control method based on tight format dynamic linearization is proposed. The control method does not depend on the accurate mathematical model of the system and is a data-driven control method. First, the dynamics of the hydraulic rudder system is modeled; Secondly, an improved dynamic linearization method is applied to give a data model of the rudder system, and a time difference estimation algorithm and a gradient estimation algorithm are introduced to estimate the parameters of the nonlinear uncertainty terms and time-varying parameter terms in the data model; Then, design an intelligent self-learning PID control method for rudder angle tracking based on the optimal performance index, using the system error information to compensate for the information lost in the linearization process by introducing additional errors; Finally, the hydraulic servo system with resistance to unknown disturbances is designed to learn the control law and parameter update law, and is validated by simulation. The research results show that the control effect of intelligent self-learning PID algorithm is the most ideal in the hydraulic rudder system of the ship considering the influence of unknown disturbance, and it can realize the change of rudder angle and hydrodynamic distance direction in 36.45 with the accuracy of rudder angle tracking error within 0.05 degrees. At the same time, the convergence of the proposed control method is verified through theoretical analysis and simulation experiments. The simulation results show the effectiveness and superiority of the control method applied to the hydraulic rudder system, which improves the rudder angle following accuracy and dynamic response speed of the ship's rudder system under rough sea voyage and can realize the accurate tracking of the desired rudder angle trajectory.
Key words: marine hydraulic servo system; unknown disturbance system; intelligent self-learning PID control; dynamic linearization; time difference estimation algorithm; gradient estimation algorithm; model-free adaptive control
收稿日期: 2024-08-28
基金项目: 国家自然科学基金项目(61873139); 山东省重大科技创新工程(2021SFGC0601); 青岛市自主创新重大专项(21-1-2-14-zhz).
作者简介: 刘毅(1997—), 男, 硕士研究生. * 通信联系人