设为首页 联系我们 加入收藏

当前位置: 网站首页 期刊分类目录 2025年第2期 正文

煤矿井筒微裂缝检测算法

作者:时间:2025-05-02点击数:



全文下载: 18.pdf


文章编号: 1672-6987202502-0132-08 DOI 10.16351/j.1672-6987.2025.02.018

程章翔a 赵佰亭a* 贾晓芬ab安徽理工大学  a. 电气与信息工程学院; b. 人工智能学院, 安徽 淮南 232001

摘要: 井筒裂缝具有尺度多变背景区分度小等特点导致井筒微裂缝检测结果不理想针对这一情况基于主流的YOLOv8目标检测模型提出了一种名为YOLO-DECT的井筒微裂缝检测网络首先融入可变形卷积模块CN-CBS增加并行子网构建EMA-SPPCSCP增强骨干网络对多尺度特征的提取能力然后结合SPDConvInceptionDWConv的优点设计了SPDIConv替换网络中的部分卷积模块增强模型对微裂缝的检测效果和学习效率最后在颈部及骨干网络末端融入EMA注意力机制利用并行子网扩大感受野避免背景噪声干扰实验结果表明提出的YOLO-DECT方法在自建数据集上的平均精度达到了83.6%针对难以检测的微小裂缝类别检测精度达到了80.6%相对原YOLOv8模型分别提高了3.4%4.5%浮点计算量下降了9.8%模型保持了轻量化的水平GRDDC2022公开数据集上检测效果优于原网络具有一定的泛用性


关键词: 裂缝检测 目标检测 深度学习 注意力机制 YOLOv8


中图分类号: TP 391        文献标志码: A


引用格式: 程章翔 赵佰亭 贾晓芬. 煤矿井筒微裂缝检测算法J. 青岛科技大学学报自然科学版 2025 462 132-139.


CHENG Zhangxiang ZHAO Baiting JIA Xiaofen. Coal mine shaft micro-crack detection algorithmJ. Journal of Qingdao University of Science and TechnologyNatural Science Edition 2025 462 132-139.

Coal Mine Shaft Micro-Crack Detection Algorithm

CHENG Zhangxianga ZHAO Baitinga JIA Xiaofenaba. College of Electrical and Information Engineeringb. College of Artificial IntelligenceAnhui University of Science and TechnologyHuainan 232001China

Abstract The characteristics of wellbore fractures are variable scale and small background differentiationwhich lead to unsatisfactory detection results. To solve this problembased on the mainstream YOLOv8 target detection modela micro-fracture detection network named YOLO-DECT was proposed. Firstlya deformable convolutional module CN-CBS is incorporated to add parallel subnetsand EMA-SPPCSCP layer is constructed to enhance the ability of the backbone network to extract multi-scale features. Thencombining the advantages of SPDConv and InceptionDWConvSPDIConv is designed to replace some convolution modules in the network and enhance the detection effect and learning efficiency of the model for microcracks. FinallyEMA attention mechanism is integrated into the neck and the end of the backbone networkand parallel subnets are used to enlarge the receptive field and avoid the interference of background noise. The experimental results show that the average accuracy of the proposed YOLO-DECT method on the self-built data set reaches 83.6%and the detection accuracy for the class of micro-cracks that are difficult to detect reaches 80.6%which is 3.4% and 4.5% higher than that of the original YOLOv8 modeland the floating point computation is reduced by 9.8%. The model maintains the level of lightweightand the detection effect on GRDDC2022 open data set is better than that of the original networkand it has certain universality.


Key words crack detectiontarget detectiondeep learningattention mechanismYOLOv8

收稿日期: 2024-07-11

基金项目: 国家自然科学基金项目52174141;安徽省自然科学基金项目2108085ME158.

作者简介: 程章翔2000—,男,硕士研究生.     * 通信联系人.


Copyright © 2011-2017 青岛科技大学学报 (自然科学版)