全文下载: 20240321.pdf
文章编号: 1672-6987(2024)03-0152-07; DOI: 10.16351/j.1672-6987.2024.03.021
史清方, 张新丽*(青岛科技大学 数理学院, 山东 青岛 266061)
摘要: 研究具有混合边界条件和广义Lewis函数的一类半线性抛物型方程的衰减和爆破性质。首先,通过引进简单的Lyapunov函数和严密的先验估计值方法得到能量的一致衰减估计值,其中包括指数和代数衰减两种情形。其次,通过修正的凹性方法得到当初始值具有适当的负能量时,解在有限时间内爆炸,并给出了解的生命跨度的精确估计。
关键词: 记忆项; 广义Lewis函数; 混合边值问题; 一致衰减; 爆破
中图分类号: O 175.1文献标志码: A
引用格式: 史清方, 张新丽. 具有记忆项和广义Lewis函数的Kirchhoff型抛物方程解的一致衰减估计和爆破[J]. 青岛科技大学学报(自然科学版), 2024, 45(3): 152-158.
SHI Qingfang, ZHANG Xinli. General decay and blow up of solution for an kirchhoff parabolic equation with a memory term and a generalized lewis function[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2024, 45(3): 152-158.
General Decay and Blow Up of Solution for an Kirchhoff Parabolic
Equation with a Memory Term and a Generalized Lewis Function
SHI Qingfang, ZHANG Xinli
(College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China)
Abstract: In this paper, we consider the decay and blow up properties of a semi-linear parabolic equation with a mixed boundary condition and a generalized Lewis functions. Under suitable conditions, we firstly establish a general decay result, from which the usual exponential and polynomial decay results are only special cases. Then we prove the solution blows up in finite time if the initial datum possesses suitable negative energy by the modifified concavity method. Moreover, we have a precise estimate for the lifespan of the solution in this case.
Key words: memory term; generalized Lewis function; mixed boundary value problems; gnearal decay; blow up
收稿日期: 2023-05-04
基金项目: 山东省自然科学基金项目(ZR2023QA008).
作者简介: 史清方(1997—),女,硕士研究生.*通信联系人.