设为首页 联系我们 加入收藏

当前位置: 网站首页 期刊分类目录 2024第1期 正文

迭代学习控制器参数的数据驱动自适应整定方法

作者:时间:2024-03-04点击数:


全文下载: 202401017.pdf


于瀛祯, 林娜, 池荣虎(青岛科技大学 自动化与电子工程学院, 山东 青岛 266061)


文章编号: 1672-6987202401-0121-08 DOI 10.16351/j.1672-6987.2024.01.017


摘要: 针对PID型迭代学习控制(iterative learning control, ILC)方法,提出了两种数据驱动自适应整定(data-driven adaptive tuning, DDAT)方法。首先采用紧格式迭代动态线性化(compact form iterative dynamic linearization,CFIDL)方法将原始的非线性系统转化为等价的线性数据模型,设计了一个目标函数来动态地调整PIDILC的学习增益。其次,通过对设计的目标函数进行优化,提出了一种基于CFIDLDDAT方法。该方法只使用实际的I/O数据,而不需要任何机理模型信息。进一步,引入偏格式迭代动态线性化(partial form iterative dynamic linearization, PFIDL)方法对结果进行扩展,提出了一种基于PFIDLDDAT方法。所提出的两种DDAT方法都可以提高PIDILC对不确定性的鲁棒性。最后,通过仿真验证了两种方法的有效性。


关键词: 数据驱动方法; 参数的自适应整定; 迭代学习控制; 优化


中图分类号: TP 13文献标志码: A

引用格式: 于瀛祯, 林娜, 池荣虎. 迭代学习控制器参数的数据驱动自适应整定方法[J. 青岛科技大学学报(自然科学版), 2024, 45(1): 121-128.


YU Yingzhen, LIN Na, CHI Ronghu. Data-driven adaptive tuning of iterative learning controlJ. Journal of Qingdao University of Science and TechnologyNatural Science Edition), 2024 451): 121-128.


Data-Driven Adaptive Tuning of Iterative Learning Control


YU Yingzhen, LIN Na, CHI Ronghu

(College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China)


Abstract: In this paper, we propose two data-driven adaptive tuning (DDAT) approaches of PID-type ILC. First, we use a compact form iterative dynamic linearization (CFIDL) method to transfer the original nonlinear system into a equivalent linear data model, and we design an objective function to dynamically tune the learning gains of ILC law. Then, by optimizing the designed objective function, a CFIDL based DDAT method is proposed. This DDAT method only uses the real I/O data and doesn′t need to know any mathematical model information. On this basis, we introduce a partial form iterative dynamic linearization (PFIDL) method to extend the research results, and propose a PFIDL based DDAT method. Both the proposed DDAT methods can help the PID-type ILC have a better robustness against to the uncertainties. Finally, the effectiveness of the two proposed DDAT-based ILC methods is verified by the simulations.


Key words: data-driven methods; adaptive tuning of learning gains; iterative learning control; optimizing


收稿日期: 2022-12-15

基金项目: 国家自然科学基金项目(61833001,61873139.

作者简介: 于瀛祯(1975-),,博士,“泰山学者特聘教授,博士生导师.







Copyright © 2011-2017 青岛科技大学学报 (自然科学版)