设为首页 联系我们 加入收藏

当前位置: 网站首页 期刊分类目录 2023第5期 正文

滤波辨识(8): 类多变量输出误差ARMA系统的滤波辅助模型递阶广义增广参数辨识

作者:时间:2023-10-08点击数:


下载全文: 202305001.pdf


文章编号: 1672-6987202305-0001-15 DOI 10.16351/j.1672-6987.2023.05.001


丁锋1,2, 万立娟2, 栾小丽1, 徐玲1, 刘喜梅2(1.江南大学 物联网工程学院, 江苏 无锡 214122; 2. 青岛科技大学 自动化与电子工程学院, 山东 青岛 266061)


摘要: 针对类多变量输出误差自回归滑动平均(M-OEARMA-like)系统,利用辅助模型辨识思想,滤波辨识理念和递阶辨识原理,研究和提出了滤波辅助模型递阶广义增广随机梯度辨识方法、滤波辅助模型递阶多新息广义增广随机梯度辨识方法、滤波辅助模型递阶广义增广递推梯度辨识方法、滤波辅助模型递阶多新息广义增广递推梯度辨识方法、滤波辅助模型递阶递推广义增广最小二乘辨识方法、滤波辅助模型递阶多新息广义增广最小二乘辨识方法。这些滤波辅助模型递阶广义增广参数辨识方法可以推广到其他有色噪声干扰下的线性和非线性多变量随机系统中。


关键词: 参数估计; 递推辨识; 辅助模型辨识; 多新息辨识; 递阶辨识; 滤波辨识; 最小二乘; 多变量系统


中图分类号: TP 273文献标志码: A

引用格式: 丁锋, 万立娟, 栾小丽, 等. 滤波辨识(8): 类多变量输出误差ARMA系统的滤波辅助模型递阶广义增广参数辨识[J. 青岛科技大学学报(自然科学版), 2023, 44(5): 1-15.


DING Feng, WAN Lijuan, LUAN Xiaoli, et al. Filtering identification. Part H: Filtering-based auxiliary model hierarchical generalized extended parameter identification for multivariable output-error ARMA-like systemsJ. Journal of Qingdao University of Science and TechnologyNatural Science Edition), 2023 445): 1-15.


Filtering Identification. Part H:Filtering-Based Auxiliary

Model Hierarchical Generalized Extended Parameter

Identification for Multivariable Output-Error ARMA-Like Systems


DING Feng1,2, WAN Lijuan2, LUAN Xiaoli1, XU Ling1, LIU Ximei2

(1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;

2. College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China)


Abstract: For multivariable output-error autoregressive moving average-like (M-OEARMA-like) models, this paper investigates and proposes filtered auxiliary model hierarchical generalized extended stochastic gradient identification method, filtered auxiliary model hierarchical multi-innovation generalized extended stochastic gradient identification method, filtered auxiliary model hierarchical generalized extended recursive gradient identification method, filtered auxiliary model hierarchical multi-innovation generalized extended recursive gradient identification method, filtered auxiliary model hierarchical generalized extended least squares identification method, and filtered auxiliary model hierarchical multi-innovation generalized extended least squares identification method by using the auxiliary model identification idea, the filtering identification idea and the hierarchical identification principle from available input-output data. These filtered auxiliary model hierarchical generalized extended parameter identification methods can be extended to other linear and nonlinear multivariable stochastic systems with colored noises.


Key words: parameter estimation; recursive identification; auxiliary model identification; multi-innovation identification; hierarchical identification; filtering identification; least squares; multivariable system


收稿日期: 2023-06-27

基金项目: 国家自然科学基金项目(62273167).

作者简介: 丁锋(1963—),男,博士,泰山学者特聘教授,博士生导师.


Copyright © 2011-2017 青岛科技大学学报 (自然科学版)