全文下载: 202204001.pdf
文章编号: 1672-6987(2022)04-0001-13; DOI: 10.16351/j.1672-6987.2022.04.001
丁锋1,2, 刘喜梅2(1. 江南大学 物联网工程学院, 江苏 无锡 214122;
2. 青岛科技大学 自动化与电子工程学院, 山东 青岛 266061)
摘要: 利用滤波辨识理念, 研究和提出了有限脉冲响应滑动平均系统的滤波增广随机梯度辨识方法、滤波多新息增广随机梯度辨识方法、滤波递推增广梯度辨识方法、滤波多新息递推增广梯度辨识方法、滤波递推增广最小二乘辨识方法、滤波多新息递推增广最小二乘辨识方法。这些滤波增广辨识方法可以推广到其他有色噪声干扰下的线性多变量和非线性多变量随机系统中。
关键词: 参数估计; 递推辨识; 多新息辨识; 递阶辨识; 最小二乘; 随机系统
中图分类号:TP 273文献标志码: A
引用格式: 丁锋, 刘喜梅. 滤波辨识(1): 有限脉冲响应滑动平均系统的滤波增广参数估计[J]. 青岛科技大学学报(自然科学版), 2022, 43(4): 1-13.
DING Feng, LIU Ximei. Filtering identification. Part A: Filtering-based extended parameter estimation for finite impulse response moving average systems[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2022, 43(4): 1-13.
Filtering Identification. Part A: Filtering-Based Extended Parameter
Estimation for Finite Impulse Response Moving Average Systems
DING Feng1,2, LIU Ximei2
(1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;
2. College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China)
Abstract: By using the filtering identification idea, this paper presents a filtering-based extended stochastic gradient identification method, a filtering-based multi-innovation extended stochastic gradient identification method, a filtering-based recursive extended gradient identification method, a filtering-based multi-innovation recursive extended gradient identification method, a filtering-based recursive extended least squares identification method, and a filtering-based multi-innovation recursive extended least squares identification method for finite impulse response moving average systems. The proposed filtering-based extended identification methods can be extended to other linear and nonlinear multivariable stochastic systems with colored noises.
Key words: parameter estimation; recursive identification; multi-innovation identification; hierarchical identification; least squares; stochastic system
收稿日期: 2022-06-27
基金项目: 国家自然科学基金项目(61873111, 61472195).
作者简介: 丁锋(1963—),男,博士,“泰山学者”特聘教授,博士生导师.