全文下载: 202202016.pdf
文章编号: 1672-6987(2022)02-0104-07; DOI: 10.16351/j.1672-6987.2022.02.016
曹梦龙, 陈志强(青岛科技大学 自动化与电子工程学院,山东 青岛 266061)
摘要: 为了解决机器人在弱光环境下可能出现的自身定位不准确及建图不完整的情况,采用了一种基于弱光环境下图像增强的方法对相机采集到的图像进行预处理,提高图像的亮度和清晰度,对增强后的图像用ORB算法提取和匹配特征点,使用Hamming距离筛选法进行特征点的误匹配处理。实验结果表明:本优化算法有效地增加了弱光环境下的特征点提取数量,并且经本算法优化后的三维点云图质量更高。
关键词: 即时定位与地图构建(SLAM); 特征提取; 特征匹配; 图像增强
中图分类号: TP 391文献标志码: A
引用格式: 曹梦龙, 陈志强. 弱光环境下视觉SLAM前端优化方法[J]. 青岛科技大学学报(自然科学版), 2022, 43(2): 104-110.
CAO Menglong, CHEN Zhiqiang. Optimization method of front end of visual SLAM in weak light environment[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2022, 43(2): 104-110.
Optimization Method of Front End of Visual SLAM
in Weak Light Environment
CAO Menglong, CHEN Zhiqiang
(College of Automation and Electronic Enginnering,Qingdao University of Science and Technology,Qingdao 266061,China)
Abstract: In order to solve the problem of inaccurate positioning and incomplete mapping of robot in weak light environment,we used an image enhancement method based on weak light environment to preprocess the images collected by the camera and improved the brightness and clarity of the images.The images feature points were extracted and matched by using the ORB algorithm,and the Hamming distance screening method was used for processing mismatched feature points.The experimental results show that the proposed algorithm effectively increase the number of feature points extraction in weak light environment,and the quality of 3D point cloud image optimized by this algorithm is higher.
Key words: simultaneous localization and mapping(SLAM); feature extraction; feature matching; image enhancement
收稿日期: 2021-05-07
基金项目: 山东省自然科学基金项目(ZR2020MF087).
作者简介: 曹梦龙(1971—),男,教授.