全文下载: 202201001.pdf
文章编号: 1672-6987(2022)01-0001-13; DOI: 10.16351/j.1672-6987.2022.01.001
丁锋1,2, 徐玲1, 籍艳2, 刘喜梅2(1. 江南大学 物联网工程学院, 江苏 无锡 214122; 2. 青岛科技大学 自动化与电子工程学院, 山东 青岛 266061)
摘要: 变间隔辨识概念是处理损失数据系统和稀少量测数据系统辨识的一种有效方法。 利用变间隔辨识概念和递阶辨识原理, 研究了线性回归系统的 变间隔递阶梯度迭代辨识方法、 变间隔递阶多新息梯度迭代辨识方法、 变间隔递阶最小二乘迭代辨识方法、变间隔递阶多新息最小二乘迭代辨识方法等。 这些变间隔递阶迭代辨识方法可以推广到其他有色噪声下的线性和非线性随机系统中。
关键词: 参数估计; 迭代辨识; 多新息辨识; 递阶辨识; 最小二乘; 线性回归模型
中图分类号: TP 273文献标志码: A
引用格式: 丁锋, 徐玲, 籍艳, 等. 传递函数辨识(24): 线性回归系统的变间隔递阶迭代参数估计[J]. 青岛科技大学学报(自然科学版), 2022, 43(1): 1-13.
DING Feng, XU Ling, JI Yan, et al. Transfer function identification. Part X: Interval-varying hierarchical iterative parameter estimation for linear regressive models[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2022, 43(1): 1-13.
Transfer Function Identification. Part X: Interval-Varying Hierarchical
Iterative Parameter Estimation for Linear Regressive Models
DING Feng1,2, XU Ling1, JI Yan2, LIU Ximei2
(1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;
2. College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China)
Abstract: The interval-varying identification concept is an effective method of handling the identification issues of missing-data systems and scarce measurement-data systems. By using the interval-varying identification concept and the hierarchical identification principle, this paper explores the interval-varying hierarchical gradient-based iterative identification methods, the interval-varying hierarchical multi-innovation gradient-based iterative identification methods, the interval-varying hierarchical least squares-based iterative identification methods, and the interval-varying hierarchical multi-innovation least squares-based iterative identification methods for linear regressive systems. These interval-varying hierarchical iterative methods can be extended to other linear and nonlinear stochastic systems with colored noises.
Key words: parameter estimation; iterative identification; multi-innovation identification; hierarchical identification; least squares; linear regressive model
收稿日期: 2021-12-12
基金项目: 国家自然科学基金项目(61873111).
作者简介: 丁锋(1963—),男,博士,“泰山学者”特聘教授,博士生导师.