设为首页 联系我们 加入收藏

当前位置: 网站首页 期刊分类目录 2022第1期 正文

基于智能PD型迭代学习控制的清扫车路径跟踪控制

作者:时间:2022-03-01点击数:

全文下载: 202201015.pdf


文章编号: 1672-6987202201-0105-06 DOI 10.16351/j.1672-6987.2022.01.015


姚文龙a, 庞震a, 池荣虎a, 邵巍a, 王华东b*(青岛科技大学 a.自动化与电子工程学院; b.信息科学技术学院,山东 青岛 266061)


摘要: 针对清扫车在园区固定路段的周期重复性工作特点,提出采用智能PD型迭代学习控制方法的清扫车路径跟踪控制问题。首先,将非线性控制系统转化为紧格式局部线性化数据模型,设计针对清扫车运动学模型的参数更新率,并基于投影算法对未知的梯度参数进行估计,此外,引入迭代差分估计算法,用于估计路面颠簸、车身垃圾重量不断变化等带来的未知扰动,最后,通过直线和曲线两种路径的仿真分析验证其有效性。结果表明:随着系统运行迭代次数的增加,车辆位置与期望坐标误差不断减小,跟踪误差是收敛的,可以实现较高精度的路径跟踪。


关键词: 清扫车; 路径跟踪; 迭代学习控制; 迭代差分估计算法


中图分类号: O 231.2文献标志码: A

引用格式: 姚文龙,庞震,池荣虎,等.基于智能PD型迭代学习控制的清扫车路径跟踪控制[J. 青岛科技大学学报(自然科学版), 2022, 43(1): 105-110.


YAO Wenlong, PANG Zhen, CHI Ronghu, et al. Trajectory tracking control of sweeping car based on intelligent PD iterative learning controlJ. Journal of Qingdao University of Science and TechnologyNatural Science Edition), 2022 431): 105-110.


Trajectory Tracking Control of Sweeping Car Based on


Intelligent PD Iterative Learning ControlYAO Wenlonga, PANG Zhena, CHI Ronghua, SHAO Weia, WANG Huadongb

(a.College of Automation and Electronic Engineering; b.College of Information Science and Technology,

Qingdao University of Science and Technology, Qingdao 266061, China)


Abstract: The sweeping car mainly carries out cleaning and watering work repeatedly in a fixed road section, which is characterized by strong repeatability. As for the trajectory tracking control of the automatic sweeping car, the intelligent PD iterative learning control method is adopted to study the trajectory tracking control of the sweeping car. Firstly, the nonlinear control system is transformed into a compact form local linearized data model. Then the parameter update rate for the kinematic model of sweeping car is designed. And the unknown gradient parameters are estimated based on projection algorithm. In addition, an iterative difference estimation algorithm was designed to estimate the unknown disturbance caused by the constant change of road bump and body garbage weight. Finally, the validity of the method is verified by simulation using two paths: straight line and curve. The results show that the coordinate error between vehicle position and expected tracking route decreases with the increase of iteration times. The tracking error is convergent, and finally the high precision trajectory tracking is realized.


Key words: sweeping car; track tracking; iterative learning control; iterative difference estimation algorithm


收稿日期: 2021-01-28

基金项目: 国家自然科学基金项目(61873139);山东省重大科技创新工程项目(2021SFGC0601);青岛市自主创新重大专项项目(21-1-2-14-zhz).

作者简介: 姚文龙(1981—),男,博士后,副教授.*通信联系人.



Copyright © 2011-2017 青岛科技大学学报 (自然科学版)