设为首页 联系我们 加入收藏

当前位置: 网站首页 期刊分类目录 2021第2期 正文

基于优化的随机森林心脏病预测算法

作者:时间:2021-04-08点击数:

全文下载: 202102016.pdf



文章编号: 1672-6987202102-0112-07 DOI 10.16351/j.1672-6987.2021.02.016


赵金超, 李仪, 王冬, 张俊虎*(青岛科技大学 信息科学技术学院,山东 青岛 266061)


摘要: 为适应优化算法的模型,用K近邻方法对数据进行预处理,提出了KNNRF模型。对数据集用K近邻进行缺失补充,并进行归一化等预处理操作,以随机森林算法为基础,并采用交叉检验和网格搜索寻找最佳参数。在比较流行的UCI心脏病数据集和克利夫兰医学中心公开数据集分别进行实验,建立了心脏病预测模型,用于辅助医生对患者是否患有心脏病进行诊断预测。通过对实验结果中的准确率、AUC值进行分析,随机森林预测结果最优,准确率达到了832%AUC值达到0965,实验结果表明:该算法分类效果较好,泛化能力强,对辅助医生进行心脏病预测具有可行性。

关键词: 心脏病预测; 数据预处理; 随机森林


中图分类号: TP 301.6文献标志码: A

引用格式: 赵金超, 李仪, 王冬, 等. 基于优化的随机森林心脏病预测算法[J. 青岛科技大学学报(自然科学版), 2021, 42(2): 112118.


ZHAO Jinchao LI Yi WANG Dong, et al. Research on heart disease prediction algorithm based on optimized random forestJ. Journal of Qingdao University of Science and TechnologyNatural Science Edition), 2021 42(2) 112118.


Heart Disease Prediction Algorithm Based on Optimized Random ForestZHAO Jinchao LI Yi WANG Dong, ZHANG Junhu

(College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China)


Abstract: In order to adapt to the model of optimization algorithm, This paper uses Knearest neighbor method to preprocess the data, and establish KNNRF model. Knearest neighbor is used to fill the dataset, and preprocessing operations such as normalization are carried out. Then, based on the random forest algorithm, this paper uses cross test and grid search to find the best parameters In the popular UCI heart disease data set and Cleveland medical center open data set, respectively, experiments were carried out to establish a heart disease prediction model to assist doctors in the diagnosis and prediction of patients with heart disease. Through the analysis of the accuracy and AUC value in the experimental results, the result of random forest prediction is the best, the accuracy is 832%, and AUC value is 0965. The experimental results show that the algorithm has good classification effect and strong generalization ability, and it is feasible to assist doctors in heart disease prediction.

Key words: prediction of heart disease data preprocessing random forest



收稿日期: 20200425

基金项目: 山东省重点研发计划项目(2015GSF119016.

作者简介: 赵金超(1994—),男,硕士研究生.*通信联系人.



Copyright © 2011-2017 青岛科技大学学报 (自然科学版)