PDF全文下载:
201903018.pdf
文章编号: 16726987(2019)030011405; DOI: 10.16351/j.16726987.2019.03.018
郝媛媛, 赵凯*
(青岛大学 数学与统计学院,山东 青岛 266071)
摘要: 令L=-Δ+μ是Rn上的广义Schrdinger算子,n≥3,其中Δ是Laplacian,μ≠0是Rn上的非负Radon测度。本研究按照BMOL空间的定义,分层证明分数次积分算子在BMOL空间上的有界性。这将进一步延展分数次积分算子在与算子相关的BMO空间上的性质。
关键词: 分数次积分算子; BMOL空间; 有界性
中图分类号: O 174.2文献标志码: A
引用格式: 郝媛媛, 赵凯. 分数次积分算子在BMOL空间中的有界性\[J\]. 青岛科技大学学报(自然科学版), 2019, 40(3): 114118.
HAO Yuanyuan, ZHAO Kai. Fractional integrals operators acting on BMOL\[J\]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2019, 40(3): 114118
Fractional Integrals Operators Acting on BMOL
HAO Yuanyuan, ZHAO Kai
(School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China)
Abstract: Let L=-Δ+μ be the generalized Schrdinger operator on Rn,n≥3, where Δ is the Laplacian and μ≠0 is a nonnegative Radon measure on Rn. In this paper, a review on the quantitative analysis of protein is presented in details, we will prove the boundedness of the fractional integral operator in BMOL space according to the definition of space. This will further extend the nature of the fractional integral operator over the BMO space associated with the operator.
Key words: fractional integral operator; BMOL space; boundedness
收稿日期: 20180813
基金项目: 国家自然科学基金项目(11471176).
作者简介: 郝媛媛(1992—),女,硕士研究生.*通信联系人.