设为首页 联系我们 加入收藏

当前位置: 网站首页 期刊分类目录 2017第1期 正文

函数优化问题的动态并行量子遗传算法

作者:时间:2017-02-23点击数:

PDF全文下载:2017010109

马胡双,石永革*

 (南昌大学 信息工程学院,江西 南昌330031)

 摘要:针对传统量子遗传算法在解复杂连续函数优化中存在的早熟收敛、收敛速度慢、计算时间长的问题,提出一种解复杂连续函数优化问题的动态并行量子遗传算法(DPQGA)。采用多种群协同进化,每个子种群按照各自的进化目标在不同的搜索区域进化,形成并行搜索方式,加快算法收敛速度,避免早熟收敛;同时设计了一种新的动态量子旋转角的更新策略及量子门调整策略,减少算法的迭代次数;在最优解连续数代无变化时引入灾变算子,使种群保持良好的多样性。通过对5个测试函数的仿真,结果表明,该算法搜索到的最优解较QGA算法更优。与已有算法相比,该算法在收敛速度、迭代次数、全局寻优能力上都有了较大的改进和提高。

 关键词: 复杂连续函数优化;量子遗传算法;动态调整旋转角;协同进化

 中图分类号:TP 18文献标志码:A

引用格式:马胡双,石永革.函数优化问题的动态并行量子遗传算法[J].青岛科技大学学报(自然科学版), 2017, 38(1): 109115.

MA Hushuang,SHI Yongge.Dynamic parallel quantum genetic algorithm for function optimization problem[J].Journal of Qingdao University of Science and Technology(Natural Science Edition), 2017, 38(1): 109115.

 Dynamic Parallel Quantum Genetic Algorithm for Function Optimization Problem

MA Hushuang,SHI Yongge

(Information Engineering School, Nanchang University,Nanchang 330031, China)

 Abstract: For that traditional quantum genetic algorithm exist the problem of premature convergence, slow convergence speed and long computing time for complex continuous function optimization problem, a new algorithm named dynamic parallel quantum genetic algorithm (DPQGA) for complex continuous function optimization problem is proposed. Multiple population coevolution is adopted. Each child population evolves in different search area according to the respective target. That will form parallel search way. So it can accelerate the algorithm convergence speed and avoid premature convergence. Meanwhile, a kind of new dynamic update strategy of quantum rotation Angle and quantum gate adjustment strategy is designed. It can reduce the number of iterations of the algorithm. When there is no change in the optimal solution for several generations, cataclysm operator is introduced into proposed algorithm to keep good population diversity. Through the experiment of five test functions, the results show that the optimal solutions of proposed algorithm are more optimal than QGA. Compared with existing algorithms, the convergence speed, the number of iterations and the global optimization ability of the algorithm has a bigger improvement and improve.

 Key words: complex continuous function optimization; quantum genetic algorithm; dynamic adjusting rotation angle; coevolution

收稿日期: 20160127

基金项目: 国家自然科学基金项目(61163005).

作者简介: 马胡双(1989—),男,硕士研究生.*通信联系人.

文章编号:16726987(2017)01010907;DOI:10.16351/j.16726987.2017.01.019

Copyright © 2011-2017 青岛科技大学学报 (自然科学版)