设为首页 联系我们 加入收藏

当前位置: 网站首页 期刊分类目录 2015第6期 正文

离散时间系统自适应迭代学习控制的研究进展

作者:时间:2015-12-16点击数:

PDF全文下载:2015060591

池荣虎a,  刘宇a, 张瑞坤b

(青岛科技大学 a.自动化与电子工程学院; b.数理学院,山东 青岛 266042))

 摘要: 离散自适应迭代学习控制是针对在有限时间区间上运行的不确定非线性离散时间系统提出的一类方法,可有效抵抗系统的不确定性,并放宽了传统迭代学习控制中要求相同初始条件和参考轨迹这两个关键假设。即可在随机初始条件下实现对迭代变化参考轨迹的几乎完全跟踪性能。本研究给出了迭代学习控制方法的分类, 对其中的自适应迭代学习控制方法的设计思路和适用背景进行了阐述。重点综述了离散时间系统自适应迭代学习控制方法的发展过程, 讨论了所提出离散时间自适应控制方法的特点和适用范围, 提出了基于数据驱动的自适应迭代学习控制发展的必然趋势和有待于进一步研究的问题。

关键词: 自适应迭代学习控制; 离散时间系统; 线性参数化不确定系统; 非线性参数化不确定系统; 非线性不确定系统; 数据驱动控制

 中图分类号: TP 273          文献标志码: A

 Research Advances on Discretetime Adaptive Iterative Learning Control

 CHI Ronghua, LIU Yu a, ZHANG Ruikunb

(a.College of Automation and Electronics Engineering;

b.College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266042, China)

Abstract: Discrete adaptive iterative learning control (DAILC) is proposed for a class of nonlinear discretetime systems, which are operating on a finite time interval repetitively. By applying DAILC, the system uncertainties can be repelled effectively. Moreover, the match conditions of identical initial state and identical reference trajectory, which are the two key assumptions in traditional ILC, are relaxed by the DAILC. In other words, the DAILC can achieve an almost perfect tracking performance under random initial state and iterationvarying reference trajectory. The classification is given for the existing iterative learning control (ILC) methods, where the adaptive iterative learning control (AILC) is elaborated with its design method and its possible applicability. On the basis of a brief review on AILC of continuoustime systems, a survey on discretetime adaptive iterative learning control (DAILC) is presented prominently with its increasing developments, and the advantages and applicability of different DAILCs are also discussed in this paper. It is emphasized in this work that datadriven adaptive ILC is an inevitable trend of AILC. Some prospective research topics are also listed in the conclusion section.

Key words:  iterative learning control; adaptive iterative learning control; discretetime systems; linear parametric uncertain systems; nonlinear parametric uncertain systems; nonlinear uncertain systems; datadriven control

 收稿日期: 20150605

基金项目: 国家自然科学基金项目(61374102).

作者简介: 池荣虎(1975—),男,副教授,博士.

文章编号:16726987(2015)06059110; DOI: 10.16351/j.16726987.2015.06.001

Copyright © 2011-2017 青岛科技大学学报 (自然科学版)