设为首页 联系我们 加入收藏

当前位置: 网站首页 期刊分类目录 2015第3期 正文

改进序列前向选择法(ISFS)和极限学习机(ELM)相结合的SPC控制图模式识别方法

作者:时间:2015-06-12点击数:

张宇波, 蔺小楠

(郑州大学 电气工程学院, 河南 郑州 450001)

摘要: 为了提高SPC(Statistical Process Control)控制图的识别效果,提出了一种采用改进序列前向选择法(ISFS)和极限学习机(ELM)相结合的方法来进行控制图模式识别。首先,对控制图进行特征提取;然后,采用改进的序列前向选择法对特征进行选择,减少了特征间的相关性和冗余性;最后,利用极限学习机来进行模式识别。仿真结果显示,改进方法的识别率可达到987%,从而为控制图提供了一种有效的识别方法。

关键词: 控制图; 模式识别; 序列前向选择法; 极限学习机

中图分类号: TH 165           文献标志码: A

Recognition Method of SPC Control Chart Pattern  Based on ISFS and ELM

ZHANG Yubo, LIN Xiaonan

(College of Electrical Engineering, Zhengzhou University, Zhengzhou 450001,China)

Abstract: In order to improve the effect of the SPC control chart pattern recognition, a new method based on improved sequential forward selection and extreme learning machine was presented in the paper. Firstly, time domain features were extracted from control chart; secondly, a modified sequential forward selection method was used to select the features to reduce the relevance and redundancy between features; finally, extreme learning machine was adopted to identify control chart. Experimental results show that the improved method can achieve a significant classification performance with accuracy of 987%, providing a new method for the control chart recognition.

Key words: control chart; pattern recognition; sequential forward selection; extreme learning machine

 收稿日期: 20140221

基金项目: 高等学校博士学科点专项科研基金项目(20124101120001).

作者简介: 张宇波(1965—),女,副教授.

 文章编号:16726987(2015)03032205; DOI: 10.16351/j.16726987.2015.03.018

Copyright © 2011-2017 青岛科技大学学报 (自然科学版)