全文下载:
202506001.pdf
文章编号: 1672-6987(2025)06-0001-11 DOI: 10.16351/j.1672-6987.2025.06.001
丁锋1,2, 栾小丽1, 徐玲3, 刘喜梅2(1.江南大学 物联网工程学院, 江苏 无锡, 214122;2.青岛科技大学 自动化与电子工程学院, 山东 青岛 266061;3.常州大学 微电子与控制工程学院, 江苏 常州 213159)
摘要: 针对子系统间存在参数耦合的多变量系统,利用耦合辨识概念,研究和提出了部分耦合梯度迭代辨识方法和部分耦合多新息梯度迭代辨识方法,部分耦合递阶梯度迭代辨识方法和部分耦合递阶多新息梯度迭代辨识方法,部分耦合递阶最小二迭代辨识方法和部分耦合递阶多新息最小二乘迭代辨识方法。这些部分耦合递阶迭代参数辨识方法可以推广到其他有色噪声干扰下的线性和非线性多变量随机系统中。
关键词: 参数估计; 迭代辨识; 多新息辨识; 递阶辨识; 耦合辨识; 最小二乘; 多变量系统
中图分类号: TP 273 文献标志码: A
引用格式: 丁锋, 栾小丽, 徐玲, 等. 耦合辨识(6):部分耦合参数向量系统的部分耦合递阶迭代参数辨识[J]. 青岛科技大学学报(自然科学版), 2025, 46(6): 1-11.
DING Feng, LUAN Xiaoli, XU Ling, et al. Coupling identification. Part F: Partially-coupled hierarchical iterative parameter identification for partially-coupled parameter vector systems[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2025, 46(6): -.
Coupling Identification. Part F: Partially-Coupled Hierarchical Iterative Parameter Identification for Partially-Coupled Parameter Vector Systems
DING Feng1,2, LUAN Xiaoli1, XU Ling3, LIU Ximei2(1.School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;2.College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China;3.School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, China)
Abstract: For the multivariable systems that exist the parameter coupling between their subsystems, this paper investigates and proposes iterative parameter identification methods for such partially-coupled parameter vector systems based on the coupling identification concept, including partially-coupled gradient-based iterative identification methods and partially-coupled multi-innovation gradient-based iterative identification methods, partially-coupled hierarchical gradient-based iterative identification methods and partially-coupled hierarchical multi-innovation gradient-based iterative identification methods, and partially-coupled hierarchical least-squares-based iterative identification methods and partially-coupled hierarchical multi-innovation least-squares-based iterative identification methods. These partially-coupled hierarchical iterative parameter identification methods can be extended to other linear and nonlinear multivariable stochastic systems under colored noise disturbances.
Key words: parameter estimation; iterative identification; multi-innovation identification; hierarchical identification; coupling identification; least squares; multivariable system
收稿日期: 2025-10-09
基金项目: 国家自然科学基金项目(62273167).
作者简介: 丁锋(1963—), 男, 博士, “泰山学者”特聘教授, 博士生导师.