学报
 网站首页  部门概况  编委会  投稿须知  制度文件  征订发行  下载专区  过刊(自科)  联系我们 
站内搜索:
当前位置: 网站首页 > 过刊(自科) > 2023年第6期 > 正文

基于多注意力融合的抗遮挡目标跟踪

2023年11月24日 14:11  点击:[]


全文下载: 202306014.pdf


文章编号: 1672-6987202306-0110-09 DOI 10.16351/j.1672-6987.2023.06.014


张天晴, 刘明华*, 何博, 邵洪波(青岛科技大学 信息科学技术学院,山东 青岛 266061)


摘要: 针对基于孪生网络的目标跟踪算法在相似目标干扰和发生遮挡时容易丢失目标的问题,提出一种基于多注意力融合的抗遮挡目标跟踪算法(anti-occlusion target tracking based on multi-attention fusionAOTMAF)。为更好地模拟遮挡图片,引入渐进式随机遮挡模块,由易到难地随机生成遮挡块对图像进行多区域遮挡,通过人工模拟被遮挡图像的方式扩充负样本数据集,提升模型在遮挡情况下对判别性特征的提取能力。从深度、高度与宽度三个维度挖掘特征图通道信息,并通过融合空间注意力,聚合特征图上每个位置的空间依赖性,增强特征表达能力,进一步提高跟踪的鲁棒性。实验结果表明,在 OTB100VOT2018GOT-10K 公开数据集上,本研究方法在复杂场景下能有效提升跟踪精度和鲁棒性。


关键词: 孪生网络; 多注意力; 抗遮挡; 目标跟踪


中图分类号: TQ 207+.2文献标志码: A

引用格式: 张天晴, 刘明华, 何博, 等. 基于多注意力融合的抗遮挡目标跟踪[J. 青岛科技大学学报(自然科学版), 2023, 44(6): 110-118.


ZHANG Tianqing LIU Minghua HE Bo, et al. Anti-occlusion target tracking based on multi-attention fusionJ. Journal of Qingdao University of Science and TechnologyNatural Science Edition), 2023 446): 110-118.


Anti-occlusion Target Tracking Based on Multi-attention Fusion


ZHANG Tianqing, LIU Minghua, HE Bo SHAO Hongbo

(College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China)


Abstract: Aiming at the problem that the target tracking algorithm based on Siamese networks is easy to lose targets when similar targets interfere and occlusion occurs, an anti-occlusion target tracking algorithm based on multi-attention fusion (AOTMAF) is proposed. In order to better simulate occluded images, a progressive random occlusion module is introduced to randomly generate occlusion blocks from easy to difficult to occlude the image in multiple areas, and the negative sample data set is expanded by manually simulating the occluded image, so as to improve the ability of the model to extract discriminant features under occlusion. The channel information of the feature map is mined from the three dimensions of depth, height and width, and the spatial dependence of each position on the feature map is aggregated by integrating spatial attention, so as to enhance the feature expression ability and further improve the robustness of tracking. The experimental results show that the proposed method can effectively improve tracking accuracy and robustness in complex scenarios on OTB100, VOT2018, GOT-10K public datasets.


Key words: Siamese network; multi-attention; anti-occlusion; object tracking


收稿日期: 2022-11-03

基金项目: 国家自然科学基金项目(61973180).

作者简介: 张天晴(1998-), , 硕士研究生.*通信联系人.




  • 附件【202306014.pdf】已下载

上一条:一种基于结构约束的点线特征融合SLAM算法

关闭

 
  通知公告 更多>>
关于作者领取2026年第1期样刊...
关于作者领取2025年第6期样刊...
关于作者领取2025年第5期样刊...
关于作者领取2025年第4期样刊...
关于作者领取2025年第3期样刊...
关于作者领取2025年第2期样刊...
关于作者领取2025年第1期样刊...
关于征集2025年《青岛科技大...
学报编辑部举办“戴尊红副主...
  期刊入口 更多>>
学报(社会科学版)网站入口  
PolyChem网站入口  
学报(自然科学版)作者投稿系统  
学报(自然科学版)专家审稿系统  
学报(自然科学版)编辑办公系统  

©版权所有:青岛科技大学 期刊中心  地址:山东省青岛市崂山区松岭路99号图书馆楼5040 邮编:266061