设为首页 联系我们 加入收藏

当前位置: 网站首页 期刊分类目录 2019第2期 正文

电动汽车动力锂电池健康状态的建模与估算

作者:时间:2019-04-01点击数:

PDF全文下载:  201902017.pdf


文章编号: 16726987201902011306 DOI 10.16351/j.16726987.2019.02.017

  

晏勇a, 雷晓蔚b

(阿坝师范学院a.电子信息与自动化学院;b.科技处,四川 阿坝623002

 

摘要: 复杂路况下,为提高电动汽车锂电池组健康状态SOHstate of health)估算实时性与准确性,通过扩展卡尔曼滤波算法估算荷电状态,结合锂电池组温度与单体锂电池电压,系统判断锂电池组健康状态,提示故障位置并及时更换。结果表明,通过建模对电动汽车锂电池组健康状态估算简单、方便、准确、高效。保证了锂电池处于最佳状态,提高了驾驶的舒适性与安全性,实用性强。

关键词: 锂电池;健康状态;建模与估算;扩展卡尔曼滤波;荷电状态

中图分类号: TM912文献标志码: A

引用格式: 晏勇, 雷晓蔚. 电动汽车动力锂电池健康状态的建模与估算\[J\]. 青岛科技大学学报(自然科学版), 2019 402): 113118.

YAN Yong LEI Xiaowei. SOH modeling and estimation for electric vehicle lithiumion battery\[J\]. Journal of Qingdao University of Science and TechnologyNatural Science Edition), 2019, 40(2) 113118.


SOH Modeling and Estimation for Electric Vehicle Lithiumion Battery

 

YAN Yonga LEI Xiaoweib

(a.College of Electronic Information and Automations;   b.Department of Science and Technology, Aba Teachers University, Aba 623002China)

 

Abstract: In order to improve the electric vehicle lithiumion SOH(state of health) estimation the realtime and accuracy under complex road conditions, using extended Kalman filtering algorithm for estimating the state of charge, combined with the temperature of lithiumion battery and the voltage of single lithiumion battery, The system can accurately judge the state of health for lithiumion battery and prompt the fault location to be replaced in time.The results show that the electric vehicle lithiumion battery health state estimation is simple, convenient, accurate and efficient by modeling. The system can keep the lithiumion battery at its best and improves the driving comfort and safety, strong practicability.

Key words: Llithiumion baterySOHmodeling and estimationEKFSOC


收稿日期:  20181103

基金项目: 四川省教育厅自然科学基金重点项目 (17ZA0002).

作者简介: 晏勇(1983—),男, 副教授.

Copyright © 2011-2017 青岛科技大学学报 (自然科学版)