设为首页 联系我们 加入收藏

当前位置: 网站首页 期刊分类目录 2014第3期 正文

基于消噪分离消噪策略的有噪混合图像盲分离方法

作者:时间:2014-07-15点击数:

PDF全文下载:2014030309

崔建涛, 范乃梅

 (郑州轻工业学院 软件学院,河南 郑州 450002)

 摘要: 独立分量分析虽能有效地对无噪信号实现分离,但是直接应用于有噪信号时效果较差。针对这个问题,给出了一个消噪分离消噪策略,并将之用于有噪混合图像盲分离且给出了具体的分离方案。首先利用小波变换对有噪图像进行消噪,然后再使用独立分量分析对消噪后的图像进行分离,接着再一次利用小波变换对分离后的图像再次消噪,从而获得较为清晰的图像。仿真实验表明,该方法能有效提高有噪混合图像分离结果的峰值信噪比和相关系数,效果良好。

 关键词: 独立分量分析;小波变换;有噪图像;信噪比

中图分类号: TP 301文献标志码: A

 Separation Method of Noisy Mixed Images Based on DenoisingSeparationDenoising Strategy

 CUI Jiantao, FAN Naimei

 (SchoolofSoftware,ZhengzhouUniversityof Light Industry,Zhengzhou450002,China)

 Abstract: Independent Component Analysis (ICA) can effectively separate noiseless signal, but can not effectively be applied to noisy signal in an efficient way. To solve this problem, a noise signal separation method of noise signal based on denoisingseparationdenoising strategy was proposed and was applied to separate noisy mixed images, and a specific separation scheme was given. The presented method firstly employs wavelet transform denoising, and then usesICAseparate denoised image, finally applies wavelet transform denoising again. Simulation experiments show that this method can effectively improve peak signaltonoise ratio and correlation coefficient for noisy mixed images.

 Key words: ICA; wavelet transform; noisy mixed image; signaltonoise ratio

收稿日期: 20130417

基金项目: 国家自然科学基金项目(61040025).

作者简介: 崔建涛(1979—),男,讲师.

Copyright © 2011-2017 青岛科技大学学报 (自然科学版)