PDF全文下载: 2014030326
刘艳艳
(西藏民族学院 教育学院, 陕西 咸阳 712082)
摘要: 对于正整数a, 设φ(a)和S(a)分别是a的Euler 函数和Smarandache函数,k是给定的正整数。 本研究运用初等数学方法给出了方程φ(n)=S(nk)有适合n>1的正整数解n的充要条件。 由此推知:如果k=[(pα-1-1)/α],其中p为奇素数,α是大于1的正整数,[(pα-1-1)/α]是(pα-1-1)/α的整数部分,则该方程有正整数解n=pαm适合n>1,其中m∈{1,2}。
关键词: Euler函数; Smarandache函数; 方程; 非平凡解
中图分类号: O 156.2文献标志码: A
Nontrivial Solutions of the Arithmetic Functional Equation φ(n)=S(nk)
LIU Yanyan
(School of Education, Tibet University for Nationalities, Xianyang 712082, China)
Abstract: For any positive integer a, let φ(a) and S(a) denote the Euler function and the Smarandache function respectively.Let k be a fixed positive integer. Using elementary number theory methods, a necessary and sufficient condition for equation φ(n)=S(nk)to have positive integer solution n with n>1 is given. As a consequence, we prove that if k=(pα-1-1)α,where p is an odd prime, α is appositive integer with α>1, (pα-1-1)α is the integral part of (pα-1-1)α then the equation has positive integer solutions n=pαm with n>1,where m∈{1,2}.
Key words: Euler function; Smarandache function; equation; nontrivial solution
收稿日期: 20140105
基金项目: 西藏民族学院项目(14myY02).
作者简介: 刘艳艳(1983—),女,硕士.